

Parcel E FS

Update on Parcel E Feasibility Study Report

Hunters Point Shipyard BCT Meeting January 27, 2011

Presentation Overview

- Shoreline Protection Tech Memo (Additional FS Appendix)
 - Background information
 - Evaluation approach of shoreline protection options
 - Results and recommendations
- 2. Update: Hot Spot Removal and Cover Options (based on Aug 2010 Amended Redevelopment Plan)
- 3. Next Steps

Part I: Shoreline Protection TM — Background Information

- Existing shoreline at Parcel E:
 - Contains sediment that is potentially impacted with metals, PCBs, pesticides, and radionuclides
 - Contiguous with IR Site 02 (IR-02), which is identified as radiologicallyimpacted and contains extensive subsurface contamination
- Draft FS Report evaluated remedial alternatives for the Parcel E shoreline:
 - One primary shoreline protection option (surface excavation and installation of protective revetment) was identified and was evaluated in conjunction with the soil alternatives
 - Shoreline protection was combined with soil covers at IR-02 to form the primary containment alternative (common to Alt S-2 through S-5)

Part I: Shoreline Protection TM – Background Information (cont.)

Agency Comments on the Draft FS Report:

Request that the FS Report evaluate natural shoreline protection options for all or part of the shoreline in addition to rock revetment

Navy Response: Develop effective shoreline remedial options that are cost effective and implementable given Parcel E site conditions.

Shoreline Protection – Evaluation of Options:

Appendix to Draft Final FS Report (& supplements Section 3.3.2.1.5):

- 1. Evaluates several options for natural or hybrid stabilization structures
- 2. Identifies the most promising natural or hybrid stabilization option to be used in combination with the shoreline revetment option presented in the Draft FS Report

Part I: Shoreline Protection TM – Background Information (cont.)

Types of Shoreline Protection Options:

- Armoring
 - Includes seawalls, bulkheads, and protective revetments
- Shoreline Nourishment
 - Involves constructing wider shoreline with berms or feeder dunes (to offset erosion from storm events)
- Shoreline Stabilization
 - Structural stabilization breakwaters, groins, sills, and reefs
 - Nonstructural stabilization aquatic vegetation, sand fill, and biodegradable organic materials (e.g., natural fiber matting)

Part I: Shoreline Protection TM – Evaluation Approach

Hybrid Stabilization:

- Technical Memorandum (Appendix to the Draft Final FS Rpt) will evaluate options that combine structural and nonstructural stabilization methods
 - Note: Nonstructural methods alone will not be adequate to dissipate moderate wave energy offshore of Parcel E and serve as an effective containment structure

Evaluation of Existing Topography along Shoreline

- 1. Steep and Narrow Shoreline Areas
 - relatively narrow (~50 ft wide or less) with predominantly steep slopes (~3:1, horizontal : vertical)
- 2. Gradually Sloped/Wide Shoreline Areas
 - relatively wider (~50 to 100 ft wide) with gradual slopes (less than 3:1, with many portions close to 10:1)

Part I: Shoreline Protection TM – Evaluation Approach(cont.)

Part I: Shoreline Protection TM — Results and Recommendations

1. Steep/Narrow Shoreline Areas

- Most areas are adjacent to inland areas with the most extensive subsurface contamination (IR-02 Northwest and IR-03) where containment is likely the most practical remediation approach
- Hybrid shoreline stabilization is not cost-effective or readily implementable because extensive excavation (and off-site disposal) would be required along both the shoreline and inland areas to create gradual slopes that would be stable in the long-term
- Recommendation Steep/Narrow Areas: Armoring
 - Most viable armoring option: Rock Revetment

Part I: Shoreline Protection TM — Evaluation

2. Gradually sloped/wide shoreline areas

- Most areas are adjacent to inland areas with less extensive subsurface contamination
- Hybrid shoreline stabilization is more cost-effective and implementable because less excavation and less extensive protective measures would be required to ensure long-term stable slopes
 - Recommendation: Gradually Sloped/Wide Areas: two hybrid stabilization options that satisfy the RAOs
 - Natural shoreline materials with offshore reef
 - Natural shoreline materials with underlying rock armor

Natural Shoreline Materials with Offshore Reef

Part I: Shoreline Protection TM – Evaluation (cont.)

Natural shoreline materials with offshore reef:

- Advantages
 - Natural shoreline: habitat for wildlife and enhanced recreational reuse
 - Offshore reef: habitat for aquatic wildlife
 - Potential for vegetation establishment within shoreline zone
 - Access to the water would be unimpeded from the landward side

Disadvantages

- Natural Shoreline: Long-term maintenance (potential for exposure to contaminated soil following erosion or intrusive use)
- Offshore reef:
 - Implementation (regulatory approval for filling in bay and need for specialized equipment)
 - Maintenance (unknown bearing capacity of sediments may result in significant settlement)
 - Access limitation to shoreline from bay (for watercraft)

Natural Shoreline Materials with Underlying Rock Armor

Part I: Shoreline Protection TM – Evaluation (cont.)

Natural shoreline materials with underlying rock armor:

- Advantages
 - Natural shoreline: habitat for wildlife and enhanced recreational reuse
 - Access would be unimpeded from the landward and bayward side
 - Underlying rock armor minimizes potential for exposure to contaminated soil following erosion or intrusive use
 - Can be constructed with conventional equipment
- Disadvantages
 - Long-term maintenance (sand replenishment may be required following erosion or intrusive use)

Part I: Shoreline Protection TM – Recommendations

Shoreline Protection Recommendations:

- 1. Steep and Narrow Shoreline Areas
 - Rock Revetment
- 2. Gradually Sloped/Wide Shoreline Areas
 - Natural Shoreline Materials with Underlying Rock Armor

Part II: FS Update – 2010 Amended Redevelopment Plan

Part II: FS Updates Preliminary Evaluation

Additional evaluation to incorporate 2010 Amended Redevelopment Plan into Draft Final FS:

- Hot spot evaluation based on residential RGs in "Shipyard South Multi-Use" and on open space RGs in "Shoreline Open Space"
 - Removal of areas that exceed RGs by either 5 or 10 times (similar to Draft FS)
- Durable covers in all areas
 - Asphalt paving in "Shipyard South Multi-Use" area
 - Soil cover in "Shoreline Open Space" area
- ICs will be aligned with updated reuse
 - Land use restrictions consistent with updated reuse
 - Activity restrictions consistent with selected remedies at other HPS parcels

Part II: FS Updates — Preliminary Eval for Hot Spot Removal and Covers

Part II: FS Updates – Preliminary Eval for Hot Spot Removal

Overall Notes:

- Relative differences in excavation volume and cost are moderate
- Increased effort and cost appears justified to better align planned cleanup with reasonably anticipated reuse

Changes in Excavation Volumes & Costs in Comparison to the Draft FS:

Overall increase in excavation volume:

- Excavation volume for "hot spot areas" increased from 33,475 to 43,474 cubic yds
- Excavation volume for "exceedance locations" decreased from 5,565 to 2,770 cubic yds
- Net increase in excavation volume (Alternatives S-4 and S-5) = 7,204 cubic yds

Overall increase in cost:

- Excavation cost for "hot spot areas" increased from \$6.4M to \$8.6M
- Excavation cost for "exceedance locations" decreased from \$1.2M to \$0.7M
- Net increase in excavation cost (Alternatives S-4 and S-5) = \$1.7M

Part II: FS Updates Preliminary Evaluation for Covers

Overall Notes:

 Updates to cover alternatives appear justified to better align planned cleanup with reasonably anticipated reuse

Changes in Comparison to the Draft FS:

- Overall increase in soil cover and decrease in asphalt paving cover:
 - Soil cover area increased from 20.4 to 58.4 acres
 - Soil cover volume increased from 98,500 to 188,500 cubic yards
 - Asphalt paving decreased from 107.4 to 56.9 acres
- Overall decrease in capital cost:
 - Soil cover cost increased from \$1.3M to \$2.4M
 - Asphalt paving cost decreased from \$8.3M to \$3.6M
 - *Note:* Cost of increased soil cover is offset by:
 - Reduction of soil cover thickness (from 3- to 2-feet thick; consistent with current analysis)
 - Reduction in asphalt paving (asphalt is more costly on a per unit area basis)

Next Steps

- 1. Additional working meeting to further discuss and resolve issues (Needed ?)
- 2. Preliminary schedule for submitting Draft Final FS Report
 - "Over-the-shoulder" review of key sections (?)
 - Align FS Report schedule with Radiological Addendum
 - Draft Final FS 5/17/2011
 - Draft Final FS Rad Add 5/27/2011
 - Final FS 8/25/2011
 - Final FS Rad Add 9/2/2011